3.3.75 \(\int \frac {1}{x \sec ^{\frac {3}{2}}(a+b \log (c x^n))} \, dx\) [275]

3.3.75.1 Optimal result
3.3.75.2 Mathematica [A] (verified)
3.3.75.3 Rubi [A] (verified)
3.3.75.4 Maple [B] (verified)
3.3.75.5 Fricas [C] (verification not implemented)
3.3.75.6 Sympy [F]
3.3.75.7 Maxima [F]
3.3.75.8 Giac [F]
3.3.75.9 Mupad [F(-1)]

3.3.75.1 Optimal result

Integrand size = 19, antiderivative size = 93 \[ \int \frac {1}{x \sec ^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )} \, dx=\frac {2 \sqrt {\cos \left (a+b \log \left (c x^n\right )\right )} \operatorname {EllipticF}\left (\frac {1}{2} \left (a+b \log \left (c x^n\right )\right ),2\right ) \sqrt {\sec \left (a+b \log \left (c x^n\right )\right )}}{3 b n}+\frac {2 \sin \left (a+b \log \left (c x^n\right )\right )}{3 b n \sqrt {\sec \left (a+b \log \left (c x^n\right )\right )}} \]

output
2/3*sin(a+b*ln(c*x^n))/b/n/sec(a+b*ln(c*x^n))^(1/2)+2/3*(cos(1/2*a+1/2*b*l 
n(c*x^n))^2)^(1/2)/cos(1/2*a+1/2*b*ln(c*x^n))*EllipticF(sin(1/2*a+1/2*b*ln 
(c*x^n)),2^(1/2))*cos(a+b*ln(c*x^n))^(1/2)*sec(a+b*ln(c*x^n))^(1/2)/b/n
 
3.3.75.2 Mathematica [A] (verified)

Time = 0.13 (sec) , antiderivative size = 72, normalized size of antiderivative = 0.77 \[ \int \frac {1}{x \sec ^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )} \, dx=\frac {\sqrt {\sec \left (a+b \log \left (c x^n\right )\right )} \left (2 \sqrt {\cos \left (a+b \log \left (c x^n\right )\right )} \operatorname {EllipticF}\left (\frac {1}{2} \left (a+b \log \left (c x^n\right )\right ),2\right )+\sin \left (2 \left (a+b \log \left (c x^n\right )\right )\right )\right )}{3 b n} \]

input
Integrate[1/(x*Sec[a + b*Log[c*x^n]]^(3/2)),x]
 
output
(Sqrt[Sec[a + b*Log[c*x^n]]]*(2*Sqrt[Cos[a + b*Log[c*x^n]]]*EllipticF[(a + 
 b*Log[c*x^n])/2, 2] + Sin[2*(a + b*Log[c*x^n])]))/(3*b*n)
 
3.3.75.3 Rubi [A] (verified)

Time = 0.36 (sec) , antiderivative size = 91, normalized size of antiderivative = 0.98, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.368, Rules used = {3039, 3042, 4256, 3042, 4258, 3042, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{x \sec ^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )} \, dx\)

\(\Big \downarrow \) 3039

\(\displaystyle \frac {\int \frac {1}{\sec ^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )}d\log \left (c x^n\right )}{n}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {1}{\csc \left (a+b \log \left (c x^n\right )+\frac {\pi }{2}\right )^{3/2}}d\log \left (c x^n\right )}{n}\)

\(\Big \downarrow \) 4256

\(\displaystyle \frac {\frac {1}{3} \int \sqrt {\sec \left (a+b \log \left (c x^n\right )\right )}d\log \left (c x^n\right )+\frac {2 \sin \left (a+b \log \left (c x^n\right )\right )}{3 b \sqrt {\sec \left (a+b \log \left (c x^n\right )\right )}}}{n}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{3} \int \sqrt {\csc \left (a+b \log \left (c x^n\right )+\frac {\pi }{2}\right )}d\log \left (c x^n\right )+\frac {2 \sin \left (a+b \log \left (c x^n\right )\right )}{3 b \sqrt {\sec \left (a+b \log \left (c x^n\right )\right )}}}{n}\)

\(\Big \downarrow \) 4258

\(\displaystyle \frac {\frac {1}{3} \sqrt {\sec \left (a+b \log \left (c x^n\right )\right )} \sqrt {\cos \left (a+b \log \left (c x^n\right )\right )} \int \frac {1}{\sqrt {\cos \left (a+b \log \left (c x^n\right )\right )}}d\log \left (c x^n\right )+\frac {2 \sin \left (a+b \log \left (c x^n\right )\right )}{3 b \sqrt {\sec \left (a+b \log \left (c x^n\right )\right )}}}{n}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{3} \sqrt {\sec \left (a+b \log \left (c x^n\right )\right )} \sqrt {\cos \left (a+b \log \left (c x^n\right )\right )} \int \frac {1}{\sqrt {\sin \left (a+b \log \left (c x^n\right )+\frac {\pi }{2}\right )}}d\log \left (c x^n\right )+\frac {2 \sin \left (a+b \log \left (c x^n\right )\right )}{3 b \sqrt {\sec \left (a+b \log \left (c x^n\right )\right )}}}{n}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {\frac {2 \sin \left (a+b \log \left (c x^n\right )\right )}{3 b \sqrt {\sec \left (a+b \log \left (c x^n\right )\right )}}+\frac {2 \sqrt {\sec \left (a+b \log \left (c x^n\right )\right )} \sqrt {\cos \left (a+b \log \left (c x^n\right )\right )} \operatorname {EllipticF}\left (\frac {1}{2} \left (a+b \log \left (c x^n\right )\right ),2\right )}{3 b}}{n}\)

input
Int[1/(x*Sec[a + b*Log[c*x^n]]^(3/2)),x]
 
output
((2*Sqrt[Cos[a + b*Log[c*x^n]]]*EllipticF[(a + b*Log[c*x^n])/2, 2]*Sqrt[Se 
c[a + b*Log[c*x^n]]])/(3*b) + (2*Sin[a + b*Log[c*x^n]])/(3*b*Sqrt[Sec[a + 
b*Log[c*x^n]]]))/n
 

3.3.75.3.1 Defintions of rubi rules used

rule 3039
Int[u_, x_Symbol] :> With[{lst = FunctionOfLog[Cancel[x*u], x]}, Simp[1/lst 
[[3]]   Subst[Int[lst[[1]], x], x, Log[lst[[2]]]], x] /;  !FalseQ[lst]] /; 
NonsumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 4256
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[Cos[c + d*x]*(( 
b*Csc[c + d*x])^(n + 1)/(b*d*n)), x] + Simp[(n + 1)/(b^2*n)   Int[(b*Csc[c 
+ d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && IntegerQ[2* 
n]
 

rule 4258
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^n*Sin[c + d*x]^n   Int[1/Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && 
 EqQ[n^2, 1/4]
 
3.3.75.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(246\) vs. \(2(119)=238\).

Time = 2.30 (sec) , antiderivative size = 247, normalized size of antiderivative = 2.66

method result size
derivativedivides \(-\frac {2 \sqrt {\left (2 {\cos \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2}-1\right ) {\sin \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2}}\, \left (4 \cos \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right ) {\sin \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{4}-2 {\sin \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2} \cos \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )+\sqrt {\frac {1}{2}-\frac {\cos \left (a +2 b \ln \left (\sqrt {c \,x^{n}}\right )\right )}{2}}\, \sqrt {-1+2 {\sin \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2}}\, \operatorname {EllipticF}\left (\cos \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right ), \sqrt {2}\right )\right )}{3 n \sqrt {-2 {\sin \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{4}+{\sin \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2}}\, \sin \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right ) \sqrt {2 {\cos \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2}-1}\, b}\) \(247\)
default \(-\frac {2 \sqrt {\left (2 {\cos \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2}-1\right ) {\sin \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2}}\, \left (4 \cos \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right ) {\sin \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{4}-2 {\sin \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2} \cos \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )+\sqrt {\frac {1}{2}-\frac {\cos \left (a +2 b \ln \left (\sqrt {c \,x^{n}}\right )\right )}{2}}\, \sqrt {-1+2 {\sin \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2}}\, \operatorname {EllipticF}\left (\cos \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right ), \sqrt {2}\right )\right )}{3 n \sqrt {-2 {\sin \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{4}+{\sin \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2}}\, \sin \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right ) \sqrt {2 {\cos \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2}-1}\, b}\) \(247\)

input
int(1/x/sec(a+b*ln(c*x^n))^(3/2),x,method=_RETURNVERBOSE)
 
output
-2/3/n*((2*cos(1/2*a+1/2*b*ln(c*x^n))^2-1)*sin(1/2*a+1/2*b*ln(c*x^n))^2)^( 
1/2)*(4*cos(1/2*a+1/2*b*ln(c*x^n))*sin(1/2*a+1/2*b*ln(c*x^n))^4-2*sin(1/2* 
a+1/2*b*ln(c*x^n))^2*cos(1/2*a+1/2*b*ln(c*x^n))+(sin(1/2*a+1/2*b*ln(c*x^n) 
)^2)^(1/2)*(-1+2*sin(1/2*a+1/2*b*ln(c*x^n))^2)^(1/2)*EllipticF(cos(1/2*a+1 
/2*b*ln(c*x^n)),2^(1/2)))/(-2*sin(1/2*a+1/2*b*ln(c*x^n))^4+sin(1/2*a+1/2*b 
*ln(c*x^n))^2)^(1/2)/sin(1/2*a+1/2*b*ln(c*x^n))/(2*cos(1/2*a+1/2*b*ln(c*x^ 
n))^2-1)^(1/2)/b
 
3.3.75.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.09 (sec) , antiderivative size = 107, normalized size of antiderivative = 1.15 \[ \int \frac {1}{x \sec ^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )} \, dx=\frac {2 \, \sqrt {\cos \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )} \sin \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right ) - i \, \sqrt {2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right ) + i \, \sin \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )\right ) + i \, \sqrt {2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right ) - i \, \sin \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )\right )}{3 \, b n} \]

input
integrate(1/x/sec(a+b*log(c*x^n))^(3/2),x, algorithm="fricas")
 
output
1/3*(2*sqrt(cos(b*n*log(x) + b*log(c) + a))*sin(b*n*log(x) + b*log(c) + a) 
 - I*sqrt(2)*weierstrassPInverse(-4, 0, cos(b*n*log(x) + b*log(c) + a) + I 
*sin(b*n*log(x) + b*log(c) + a)) + I*sqrt(2)*weierstrassPInverse(-4, 0, co 
s(b*n*log(x) + b*log(c) + a) - I*sin(b*n*log(x) + b*log(c) + a)))/(b*n)
 
3.3.75.6 Sympy [F]

\[ \int \frac {1}{x \sec ^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )} \, dx=\int \frac {1}{x \sec ^{\frac {3}{2}}{\left (a + b \log {\left (c x^{n} \right )} \right )}}\, dx \]

input
integrate(1/x/sec(a+b*ln(c*x**n))**(3/2),x)
 
output
Integral(1/(x*sec(a + b*log(c*x**n))**(3/2)), x)
 
3.3.75.7 Maxima [F]

\[ \int \frac {1}{x \sec ^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )} \, dx=\int { \frac {1}{x \sec \left (b \log \left (c x^{n}\right ) + a\right )^{\frac {3}{2}}} \,d x } \]

input
integrate(1/x/sec(a+b*log(c*x^n))^(3/2),x, algorithm="maxima")
 
output
integrate(1/(x*sec(b*log(c*x^n) + a)^(3/2)), x)
 
3.3.75.8 Giac [F]

\[ \int \frac {1}{x \sec ^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )} \, dx=\int { \frac {1}{x \sec \left (b \log \left (c x^{n}\right ) + a\right )^{\frac {3}{2}}} \,d x } \]

input
integrate(1/x/sec(a+b*log(c*x^n))^(3/2),x, algorithm="giac")
 
output
integrate(1/(x*sec(b*log(c*x^n) + a)^(3/2)), x)
 
3.3.75.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{x \sec ^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )} \, dx=\int \frac {1}{x\,{\left (\frac {1}{\cos \left (a+b\,\ln \left (c\,x^n\right )\right )}\right )}^{3/2}} \,d x \]

input
int(1/(x*(1/cos(a + b*log(c*x^n)))^(3/2)),x)
 
output
int(1/(x*(1/cos(a + b*log(c*x^n)))^(3/2)), x)